Все породы деревьев делятся на хвойные и лиственные. Хвойные породы отличаются от лиственных большей прямослойностью волокон и наличием в их составе большего количества смолистых веществ. Именно смолистые вещества увеличивают сопротив¬ляемость древесины загниванию. Поэтому деревянные строительные конструкции изготавливаются в основном из древесины хвойных пород. Исходя из этого подроб¬нее остановимся на строении и свойствах хвойной древесины.

СТРОЕНИЕ ХВОЙНОЙ ДРЕВЕСИНЫ

Древесина имеет трубчатое слоисто-волокнистое строение. В поперечном разрезе ствол дерева состоит из коры, тонкого слоя камбия, заболони, ядровой части и сердцевины. Камбий - это живая часть ствола, находящаяся под корой. Питаясь восходящими соками, камбий непосредственно участвует в росте дерева, организует прирост основной древесины и коры. Сердцевина - центральная внутренняя часть ствола диаметром всего 3-5 мм. Она относится, скорее, к порокам естественного роста, чем к полезной части древесины, так как состоит из рыхлых малопрочных клеток. Поэтому пиломатериалы мелких сортаментов (доски) с сердцевиной относятся ко второму и третьему сорту и не рекомендуются к применению в растянутых элементах несущих конструкций.

Вся основная часть ствола дерева, расположенная между тонким слоем камбия и сердцевиной и содержащая прочные и плотные клетки, состоит из двух частей: заболони и ядра. Заболонь - молодая, неомертвевшая часть древесины, которая находится ближе к наружному контуру ствола и осуществляет восходящее движение соков от корней к кроне дерева. Ядро - старая, наиболее прочная и плотная часть древесины, не принимающая участия в движении соков. Именно в ядровой части заключается наибольшее количество смол, которые придают материалу прочность и выделяют фитонцидные вещества. С возрастом дерева размеры ядра увеличиваются за счет перехода части заболонной древесины в ядровую, а ширина заболони постепенно уменьшается. Наиболее прочный строительный материал получается из ядровой древесины. Чтобы отличить заболонь от ядра, нужно обратить внимание на цвет: заболонь, как правило, более светлая, ядро более темное. Исключение составляет древесина ели, в которой отли¬чить ядро от заболони труднее. С точки зрения микростроения основную массу древесины (до 95%) составляют древесные волокна, располагающиеся вдоль ствола растущего дерева и состоящие из удлиненных пустотелых оболочек отмерших клеток, называемых трахеидами.

Трахеиды в сечении имеют почти прямоугольную пустотелую форму. Их пористые стенки представляют собой многослойное сплетение тонких волоконец - фибрилл, образованных из нитевидных молекул целлюлозы. Целлюлоза входит в состав воло¬кон, формируя их каркас и обеспечивая им прочность. Промежутки между клетками- волокнами заполнены межклеточным веществом аморфной структуры - лигнином, который склеивает волокна между собой. Таким образом, целлюлоза и лигнин явля¬ются основными компонентами древесинного вещества. Упрощенное, но наглядное представление о строении древесины хвойных пород дает сравнение ее с пучком соломы, в котором отдельные соломинки-волокна склее¬ны между собой в поперечном направлении клеем аморфного строения.

Рост дерева происходит за счет деления клеток камбия только в весенне-летне- осенний период. Зимой дерево не растет. Каждый год дерево прибавляет по одному слою древесины. При этом в каждом годичном слое присутствует ранняя и поздняя древесина. Ранняя древесина имеет трахеиды с большими размерами поперечного сечения и тонкой стенкой. В поздней древесине - трахеиды с меньшими размерами поперечного сечения, но с гораздо более толстыми стенками. Таким образом, поздняя древесина в своем строении имеет меньше пустот и больше древесинного вещества. Поэтому она плотнее, темнее по цвету и прочнее ранней древесины. В деревьях хвойных пород 70-90% годичного слоя составляет ранняя древесина и всего лишь Годичный слой - слой древесины, который у растущего дерева образуется ежегодно с наружной части ствола под корой. На поперечном срезе хвойного дерева годичные слои представлены в виде чередующихся светлых и темных полос, количество пар которых соответствует возрасту дерева в годах. Ранняя древесина - часть годичного слоя, которая образовалась весной при избытке влаги, когда рост идет интенсивно. Поздняя древесина - часть годичного слоя, которая образовалась в летне-осенний период, когда влаги меньше, рост замедлен, но питательных веществ еще достаточно. Сучки - радиально направленные волокна древесины (основания ветвей); вызывают искривление во-локон основного ствола. Древесина сучков отличается от основной массы ствола повышенной твердо¬стью, более темным цветом и имеет самостоятельную систему годичных колец. Сучки снижают прочность древесины, затрудняют ее обработку, создают внутреннее напряжение в деревянных элементах.

Свиль (свилеватость) - извилистое или спутанное расположение волокон, образующее завиток. Свилеватость увеличивает плотность древесины в местах ее расположения. Так же, как и сучки, за-трудняет обработку древесины и создает внутренние напряжения.

10-30% - поздняя древесина. Чем больше поздней древесины в годичных слоях, тем прочнее «чистая» (то есть без сучков, свили, косослоя и других пороков) древе¬сина. В деревянных конструкциях должен применяться лесоматериал, содержащий в своей структуре не менее 20% поздней древесины.

В структуре древесины различают также сердцевинные лучи, которые в хвойных породах занимают около 7% полного объема древесины, а в лиственных - 18%. Их клетки имеют радиальное направление, поэтому помогают древесине работать на скалывание в тангенциальном направлении (вдоль волокон) и увеличивают прочность на смятие в радиальном направлении (поперек волокон). Именно они и образуют ветки (а значит, и сучки).

Древесина лиственных пород имеет несколько отличную от хвойных структуру, в кото¬рой стенки клеток древесного волокна образованы тремя слоями микрофибры. Каждый из слоев микрофибры направлен по спирали с различным углом наклона к продоль¬ной оси клетки. Спиральное направление стенок клеток древесины лиственных пород, в частности, наиболее распространенной в России березы, приводит к короблению и растрескиванию пиломатериала при сушке и ухудшению гвоздимости. Наличие этих недостатков и малая стойкость к загниванию ограничивают применение лиственных пород для деревянных конструкций. Вместе с тем, высокие прочностные показатели древесины твердых лиственных пород (в том числе и березы) позволяют использовать их для изготовления мелких соединительных элементов (нагелей, шпонок, накладок), а также ответственных опорных деталей. Такие детали из древесины дуба можно не антисептировать, а из березы они обязательно должны быть антисептированы.

Кроме пустотелых волокон, межклеточного вещества, смолы и сердцевинных лу¬чей, древесина содержит большое количество влаги (водных растворов солей). Всю влагу, содержащуюся в древесине, можно разделить на три вида: свободная, гигроскопическая и химически связанная влага. Свободная и гигроскопическая влага могут быть удалены из древесины путем сушки. Химически связанная влага выделяется из древесины лишь в процессе ее хими¬ческой переработки, а также при гниении или горении. Кстати, при гниении 1 куб. м древесины из нее выделяется около восьми литров воды.

Количество воды в древесине оценивается таким ее показателем, как влажность. Свежесрубленная древесина имеет влажность до 80-100%, а влажность сплав¬ной древесины может достигать 180-200%. Для строительных деталей должна использоваться древесина с влажностью в пределах от 8 до 20%. Достигается такой по-казатель в процессе правильно организованной сушки.

Снижение влажности до 30% достигается воздушной сушкой в штабелях. Наиболее трудным и ответственным в общем процессе сушки древесины является процесс сушки от 30 до 8-20% влажности. Принято считать, что максимальное количество гигроскопической влаги, которое может набрать древесина, составляет при температуре 20°С примерно 30% (это так называемая точка насыщения волокон). Точка насыщения волокон является граничной для изменения прочности древесины в зависимости от ее влажности. Это объ-ясняется тем, что при уменьшении влажности от 200 до 30% в древесине удаляется только свободная влага, а удаление свободной влаги не вызывает усушки, а следовательно, и деформаций. (Примерная длительность сушки пиломатериалов из свежесрубленной древесины до влажности 30% указана в таблице). Дальнейшая отдача влаги (уже гигроскопической) происходит существенно медленнее. Движение и отдача влаги при высы-хании происходит как поперек, так и вдоль волокон, однако с большей интенсивностью влага перемещается вдоль волокон. Движение влаги поперек волокон при высыхании приводит к состоянию, когда наружные слои древесины уже высохли, а внутренние остаются сырыми. Это создает нежелательные внутренние напряжения в сечении деревянного элемента, являющиеся причиной его растрескивания или коробления.

Чтобы избежать такого нежелательного эффекта, важно, чтобы наружные и внутренние слои высыхали равномерно. Такие условия создает мягкий режим сушки, при котором все процессы происходят медленнее и при меньшей температуре, чем при жестком или нормальном режиме.

Наоборот, при увеличении влажности от 0 до 30% происходит насыщение водой оболочек клеток, древесина набухает, и строительные детали увеличиваются в объ- Свободная влага - влага, частично или полностью заполняющая внутреннюю полость клеток древесины и межклеточное пространство. Гигроскопическая влага - влага, которую впитали в себя пористые стенки клеток; количество ее ограничено способностью клеток впитывать, то есть гигроскопичностью. Химически связанная влага - вода, входящая в химический состав древесинного вещества. Влажность древесины - отношение массы воды, содержащейся в древесине, к массе абсолютно сухой (то есть не содержащей свободной и гигроскопической влаги) древесины, выраженное в процентах. Усушка - уменьшение линейных размеров и объема древесины при удалении из нее гигроскопической влаги. Удаление свободной влаги не вызывает усушки. Чем больше клеточных стенок в единице объема древесины, тем больше в ней гигроскопической влаги и выше усушка.

Изменение формы дерева при сушке

Коробление - изменение формы пиломатериалов и заготовок при сушке, а также выпиловке и неправильном хранении. Чаще всего коробление происходит из-за различия величины усушки по разным структурным направлениям (то есть в радиальном и тангенциальном направлениях).При этом в стесненных условиях (например, в стене дома) в деревянных элемен-тах могут возникнуть значительные внутренние напряжения, которые также приведут к деформациям (выпучиванию) деревянных элементов и конструкций. Важно также знать, что, чем плотнее древесина, тем больше размеры усушки и разбухания при прочих равных условиях. В соответствии с этим размеры усушки в радиальном и тангенциальном направлениях у поздней (более плотной) древесины значительно больше, чем у ранней (более пористой).

Стандартной влажностью древесины считается влажность 12%. Именно при такой влажности сравниваются все свойства древесины.

Достоинства хвойной древесины

Наряду с такими актуальными характеристиками, как экологичность, природная кра-сота, способность «дышать» и создавать благоприятный микроклимат в помещении, хвойная древесина обладает еще целым рядом положительных свойств, делающих деревянный дом прочным, теплым, надежным, долговечным и экономичным.

Малый вес. Древесина хвойных пород, используемая в строительстве, при сред¬ней плотности 500 кг/м3 в 15,7 раза легче стали и в 4,8 раза легче бетона, что поз¬воляет значительно снизить материальные затраты на транспортировку, устройство фундаментов, обходиться без тяжелых грузоподъемных механизмов при возведении зданий и сооружений. Высокая удельная прочность. Одним из показателей эффективности применения конструкций из различных материалов является так называемая удельная прочность материала. Если иметь в виду, что расчетное сопротивление (то есть предел прочности) древесины в среднем составляет 14 МПа (мегапаскалей), стали 230 МПа, а бетона клас¬са В25 - 30 МПа, то для древесины соотношение расчетного сопротивления к плотности составляет 28, для стали - 29,3, а для бетона - 1 2,5 единицы. Таким образом, удельная прочность древесины всего на 4,4% меньше, чем стали, и на 122% выше, чем бетона. Этот показатель подтверждает целесообразность применения деревянных и, в частнос¬ти, клееных деревянных конструкций наравне с металлическими конструкциями в боль¬шепролетных зданиях, где собственный вес конструкций имеет решающее значение.

Эластичность и вязкость. Из всех традиционных строительных материалов толь¬ко древесина, обладая высокой эластичностью, позволяет зданию реагировать на неравномерную осадку оснований фундаментов без появления и развития трещин в деревянных деталях, а также дает возможность обходиться фундаментами мелко¬го заглубления. Вязкий характер разрушения конструкций из древесины позволяет перераспределяться усилиям в элементах конструкций, что исключает возможность мгновенного их обрушения.

Незначительное температурное расширение. Температурное расширение дре-весины при нагреве или остывании значительно меньше, чем у других строительных материалов. Например, коэффициент термического расширения древесины вдоль воло¬кон составляет всего 3,6x10"6, стали - 11,5x10 6, алюминия - 23,8-27x10"6, бетона - 12,6x10"6 градус". Это говорит о том, что в условиях сильного нагрева деревянные эле¬менты будут иметь удлинения в 2,5 раза меньше, чем стальные, в 2,8 раза меньше, чем бетонные, и в 5,7 раза меньше, чем алюминиевые. Именно поэтому исчезает необходимость расчленять деревянные здания на блоки ограниченной длины посредством устройства температурных швов.

  1. Вспомни, какой материал называют конструкционным.
  2. Из какого сырья изготавливают бумагу, картон?
  3. Назови конструкционные материалы, которые используют для производства автомобилей, самолетов, сооружения домов, изготовления домашней мебели. Где изготавливают указанные материалы и какое сырье для этого используют?

Развитие современной техники и технологий зависит от производства и использования разнообразных конструкционных материалов: древесины, металла, пластичных масс, стекла и т.п. Большое распространение получило использование древесины. Изделия из нее применяют практически во всех сферах нашей жизни. Из этого материала изготавливают бумагу, картон, искусственный шелк, пластмассу, мебель, элементы зданий, музыкальные инструменты и сувениры и много других нужных вещей.

Все древесные породы делят на две группы: хвойные и ли- ственные (рис. 13).

Рис. 13. Породы деревьев: а – хвойные; б – лиственные

Хвойные породы имеют листья в форме игл. К ним принадлежат: ель, сосна, кедр, лиственница, пихта и т.п. Лиственными породами являются ольха, липа, дуб, бук, граб и другие (рис. 14).

Рис. 14. Древесина различных пород деревьев: а – дуб; б – липа; в – береза; г – ольха; д – ель; е – сосна

Деревья используют для изготовления конструкционных древесных материалов. Древесные материалы легко поддаются обработке различными режущими инструментами: пилками, ножами, долотами, сверлами, напильниками и другими. Элементы конструкций из древесных материалов надежно и крепко соединяются гвоздями, шурупами, а также склеиванием. Деревья – самые высокие из всех растений, хотя есть среди них и карлики, до нескольких сантиметров высотой (рис. 15).

Рис. 15. Высокорослые (а) и карликовые (б) деревья

Рис. 16. Строение дерева

Каждое дерево состоит из трех частей: корня, ствола и кроны (рис. 16).

Корень всасывает из почвы влагу и растворенные в ней питательные вещества и проводит их к стволу.

Ствол – это основная часть дерева. Он проводит воду с растворенными в ней питательными веществами от корня к веткам и листьям.

Крона – верхняя часть дерева, состоящая из веток и листьев. Листья деревьев впитывают углекислый газ, а выделяют кислород, поэтому леса называют «легкими планеты». Они улучшают состояние окружающей среды, очищая воздух и воду, способствуют развитию растительного и животного мира – всего живого на Земле.

Охрана природы – важная обязанность каждого человека. В Украине охрана природных ресурсов стала одним из самых главных заданий, а такие редкие деревья, как лиственница польская, сосна кедровая, сосна меловая, дуб австрийский, береза днепровская и другие, занесенные в Красную книгу Украины, охраняются законом и запрещены для промышленного использования.

В нашей стране есть лесхозы – специализированные лесные хозяйства, в которых производится выращивание деревьев для промышленной переработки и производства древесных материалов. Они выращивают разные породы деревьев на огромных территориях. Через определенное время, когда дерево достигнет промышленного возраста, то есть будет иметь определенную высоту и диаметр ствола, осуществляют его заготовку. При этом лесные хозяйства заботятся и о возобновлении лесных насаждений – наместах спиленных деревьев высаживают новые молодые деревья.

В лесных хозяйствах деревья сначала спиливают (рис. 17, а). Потом очищенные от веток стволы, которые называют хлыстами, перемещают к месту отгрузки. Этот процесс называют трелевкой. Для трелевки используют специальные трелевочные трактора (рис. 17, б). Потом древесину загружают и транспортируют на специальную эстакаду, где хлысты распиливают на части – колоды. Этот процесс называют раскряжевыванием (рис. 18).

Рис. 17. Заготовка древесины: а – спиливание; б – трелевка

Рис. 18. Раскряжевывание древесины

Колоды называют деловой древесиной, а вершину хлыста (где много сучков) – дровяной (рис. 19).

Рис. 19. Деловая (а) и дровяная (б) древесина

Рис. 20. Пилорама

Для получения древесных материалов деловую древесину разрезают вдоль ствола на специальных машинах – пилорамах (рис. 20). Предприятия, производящие обработку древесины, называются деревообрабатывающими. На них перерабатывают также отходы древесины: опилки, кору, ветки, корень. Из них изготавливают различные материалы: клей, искусственный шелк, бумагу, картон, древесные плиты и т.п.

В результате распиловки деловой древесины образуются разнообразные древесные пиломатериалы (рис. 21). Из пиломатериалов изготавливают разнообразные изделия. Однако, чтобы изделие было надежным в использовании, имело привлекательный внешний вид и ряд других качественных признаков, необходимо учитывать при его изготовлении особенности строения древесины. Ее изучают по трем разрезам ствола: поперечному (торцевому), радиальному и тангенциальному (рис. 22).

Рис. 21. Виды пиломатериалов

Рис. 22. Основные разрезы ствола дерева: 1 – тангенциальный; 2 – радиальный; 3 – поперечный (торцевой)

Рис. 23. Годовые кольца на поперечном разрезе ствола

Рис. 24. Текстура некоторых пород древесины: а – дуб; б – береза; в – орех; г – граб

По поперечному разрезу ствола и количеству колец, которые видны на нем, можно определить, сколько дереву лет, как быстро оно росло, как изменялась за время его роста погода и т.п. (рис. 23). На поперечном разрезе наблюдается чередование светлых и темных колец.

Разрез древесины вдоль ствола через сердцевину называют радиальным. На нем видны продольные полосы, образовавшиеся в результате роста дерева. Разрезав ствол на некотором расстоянии от сердцевины, получают тангенциальный разрез. На нем можно увидеть характерный для каждого дерева рисунок определенного цвета, который называют текстурой (рис. 24). Она зависит от особенностей строения каждой породы древесины и направления разреза ствола.

О других свойствах древесных материалов ты узнаешь из следующих параграфов учебника.

Лабораторно-практическая работа № 3. Ознакомление с текстурой древесных материалов

Оборудование и материалы: столярный верстак, образцы разных пород древесины, лупа, набор цветных карандашей, линейка, мел.

Последовательность выполнения работы

  1. Рассмотри образцы различных пород древесины.
  2. Обозначь каждый образец мелом.
  3. Сравни текстуру каждого образца древесины с текстурой разных пород древесины, изображенных на рисунке 24 учебника.
  4. Объясни, в чем сходство и отличие образцов (размещение и ширина годовых колец, цвет древесины, запах, другие признаки).
  5. По вышеупомянутым свойствам и рисунку соответствующей текстуры, изображенному в учебнике, определи породу древесины.
  6. Заполни таблицу по следующему образцу:

Новые термины

лиственная порода, хвойная порода, корень, ствол, крона, деловая древесина, дровяная древесина, промышленный возраст, хлыст, колода, раскряжевывание, текстура.

Основные понятия

  • Брус – опиленная четырехгранная колода.
  • Красная книга Украины – книга, в которой записаны растения и животные, охраняемые государством и запрещенные для промышленного использования.
  • Пилорама – устройство с электромотором, предназначенное для распиловки колод на пиломатериалы.
  • Питательные вещества – растворенные в воде вещества, питающие растение.
  • Порода дерева – совокупность определенных признаков, свойств, которыми характеризуется дерево.
  • Природные ресурсы – запасы чего-либо в природе, которые можно использовать в случае необходимости.
  • Свойство, признак – особенность, характерная чему-либо (например, запах, цвет, звукопроводимость и т.п.).

Закрепление материала

  1. Какие породы древесины относят к хвойным? К лиственным?
  2. Какие древесные материалы изготавливают на деревообрабатывающих предприятиях?
  3. Что называют текстурой древесины?
  4. Каково строение дерева?
  5. Какие виды пиломатериалов ты знаешь?
  6. Охарактеризуй роль леса в жизни человека.
  7. Как влияют зеленые насаждения на улучшение окружающей природной среды?
  8. Какие деревья твоего региона занесены в Красную книгу Украины?

Тестовые задания

    1. К хвойным породам принадлежат

      А береза
      Б сосна
      В ольха
      Г дуб
      Д ель
      Е граб

    2. К пиломатериалам принадлежат

      А хлыст
      Б брус
      В колода
      Г доска
      Д все вышеупомянутые
      Е ни один из указанных

    3. Что изготавливают из колод?

      А столы
      Б пиломатериалы
      В стулья

    4. К лиственным породам принадлежат

      А клен
      Б ель
      В осина
      Г сосна

    5. Как называется естественный рисунок на обработанной поверхности древесины?

      А структура
      Б продольные полосы
      В текстура
      Г заболонь

Первым основным преимуществом древесины по сравнению с другими конструкционными материалами является постоянное возобновление ее запасов. Это характерно для нашей Родины, значительная часть которой покрыта лесами. Советский Союз обладает необозримой зеленой фабрикой, на территории которой ежедневно, ежечасно благодатные силы природы создают чудесный материал, необходимый в различных отраслях народного хозяйства. При создании других конструкционных материалов (стали, бетона, пластмассы и др.) расходуется большое количество исходного сырья, запасы которого не возобновляются, а постоянно иссякают. Кроме того, при создании большинства конструкционных материалов требуются большие затраты энергии, дефицит которой ощущается уже сейчас во многих странах. В процессе создания древесины используется энергия солнца, запасы которой колоссальны.

Вторым преимуществом древесины является малая плотность и относительно высокие удельная прочность и жесткость. В соответствующей таблице описываются эти показатели для древесины и основных конструкционных материалов.

В этой таблице даны максимальные (числитель) и минимальные (знаменатель) пределы прочности и модули упругости сосны (хвойные породы), ясеня (лиственные кольцесосудистые) и березы (лиственные рассеяннососудистые) при влажности 12%. Из приведенных данных видно, что максимальная удельная прочность древесины всех пород примерно равна удельной прочности лучших сортов стали и в 4 раза превосходит удельную прочность стали. Максимальная удельная жесткость древесины всех пород примерно равна удельной жесткости
стали и существенно превосходит удельную жесткость дюралюминия и стеклопластов.

Третьим преимуществом древесины по сравнению с другими конструкционными материалами является более легкая обрабатываемость.

Решающую роль при выборе древесины для изготовления многих изделий, конструкций играют также ее малая тепло- и электропроводность, высокая звукоизоляционность, биологическая совместимость, высокие акустические свойства, эстетичность, химическая стойкость и т. д.

Многолетние наблюдения свидетельствуют о том, что и деревянных домах, оборудованных предметами из натуральной древесины, человек чувствует себя гораздо лучше, чем в каменных и железобетонных с внутренними интерьерами из пластмасс. Замена железобетонных и каменных зданий деревянными в сельском хозяйстве способствует повышению продуктивности животноводства. Исследования акустических свойств материалов показали, что древесина является лучшим и пока незаменимым для изготовления дек музыкальных инструментов. Наличие агрессивных сред в цехах химических производств диктует необходимость замены металлических и железобетонных конструкций деревянными как более устойчивыми в отношении химических воздействий.

Однако пороки, существенно снижающие качество изделий, из древесины, малые прочность и жесткость и направлениях, перпендикулярных к волокнам, существенное снижение механических характеристик при увеличении влажности, ползучесть даже при нормальной температуре порождают в ряде случаев недоверие к древесине как конструкционному материалу. Это недоверие является большей частью следствием относительно малой изученности прочности и жесткости изделий из древесины. Тщательные теоретические и экспериментальные исследования этих вопросов необходимы для выработки рекомендаций рационального использования древесины и изделиях и определения их надежности и долговечности.

Особое внимание заслуживает использование древесины в сочетании с другими конструкционными материалами. В этом случае можно использовать положительные свойства древесины и компенсировать ее недостатки. Применение различных материалов (древесины, металла, пластмасс, железобетона) в комплексе обеспечивает наиболее эффективное использование свойств, присущих каждому из них. Таким образом, роль древесины как конструкционного материала должна постоянно возрастать.

| Срок службы |

Древесина как природный материал

Породы древесины
Термообработаная древесина (дымчатая)

Древесина - традиционный материал для изготовления напольных покрытий, в число которых входят паркет, паркетная доска и доска из массива. Под древесиной понимают тело древесных и кустарниковых растений, окруженное камбием и корой.

От ширины и видимости годичных колец дерева зависит фактура и рисунок поверхности изделий из древесины для разных вариантов ее распила. Считается, что с эстетической точки зрения ценность древесины тем выше, чем равномернее строение годичных слоев и чем меньше различия в ширине отдельных слоев.

С точки зрения распила древесины рассматриваются три основных вида: поперечный (или торцевой) ; радиальный ; тангенциальный .

Использование для производства описываемых строительных материалов (паркета, доски из массива и паркетной доски) натурального дерева определяет перенос достоинств и недостатков этого природного материала на свойства напольных покрытий. Наибольшие сложности создает зависимость геометрических размеров изделий от температурно-влажностного режима хранения, транспортировки, укладки и эксплуатации. В связи с этим, кроме правильной упаковки и соблюдения условий хранения и транспортирования, существуют определенные ограничения температуры и влажности помещений (включая ограждающие конструкции - основание и стены) при укладке и эксплуатации паркета.

Этими же соображениями определяется в основном выбор размерных рядов изделий, включая соотношение между длиной и шириной и толщину, параметры шпунтового соединения и допуски на точность обработки в процессе изготовления. Качество напольных покрытий из натурального дерева зависит от породы древесины, условий ее роста, обработки и эксплуатации.

Цвет древесины (рис. 4) обусловлен содержащимися в ней дубильными, красящими, смолистыми веществами и их оксидами и зависит от породы дерева, его возраста, состава почвы и климатических условий местности, где оно росло. Со временем цвет древесины меняется, она как бы патинирует, что с одной стороны создает ауру старины, а с другой затрудняет ремонт пола, связанный с заменой отдельных планок.

Текстура древесины - это естественный рисунок, образованный волокнами и слоями древесины и обусловленный особенностями ее структуры. Зависит от расположения древесных волокон, различимости годовых слоев, цветовой гаммы древесины, количества и размеров сердцевинных лучей. По цвету и текстуре определяют породу древесины.

Твердость древесины в первую очередь зависит от породы древесины, а также в большой степени от условий роста дерева, влажности и пр. В пределах одного вида разброс значений может быть весьма значительным. Обычно указываются средние относительные показатели твердости по Бринелю в процентах по отношению к дубу, относительная твердость дуба принимается за 100%.
Твердость по Бринелю определяется вдавливанием в испытываемый образец стального закаленного шарика диаметром 10 мм с определенной силой. Затем измеряют образовавшуюся лунку и рассчитывают величину твердости по Бринелю (чем меньше лунка, тем тверже древесина). Чем тверже древесина, тем выше число по этой шкале.

Древесина является гигроскопичным материалом , который обладает свойством поглощать влагу из окружающей среды и отдавать ее. Ее влажность изменяется при изменении климатической характеристики окружающего воздуха. Например, при относительной влажности воздуха 50% и температуре +20 °С равновесная влажность древесины составит 9%, при влажности воздуха 30% и температуре +25 °С этот показатель равен 5%. Скорость изменения влажности древесины зависит от породы.

При изменении влажности древесины происходит и изменение линейных размеров планок, характеризуемое коэффициентом линейного расширения . Данный показатель выражается в % от ширины планки.

На диаграмме (рис. 3) представлены данные об изменении ширины планки в зависимости от породы древесины при изменении влажности древесины на 1%.

Используя данный коэффициент, можно расчетным путем определить теоретическую деформацию паркетной укладки (реальная деформация, как правило, оказывается меньше расчетной).

Деформация древесины, являющейся анизотропным материалом, происходит неодинаково в различных направлениях и зависит от типа распила и от наличия остаточных напряжений после сушки.

Следует также отметить, что при нормальной влажности в помещении (нормой считается влажность 40-65%) существенных линейных изменений у качественно высушенного паркета происходить не будет, т.е. от качества сушки зависит, как будет себя вести паркетный пол при его эксплуатации, насколько долговечным он будет. Хорошие, с точки зрения минимизации остаточных напряжений, результаты дают вакуумная или вакуумно-конвективная сушка.

Влажность древесины планок по ГОСТ 862.1-85 при отгрузке потребителю должна быть 9±3 %. Такая влажность является оптимальной с точки зрения сохранения паркетом своих геометрических размеров. В нормальных условиях эксплуатации 19% влажности древесины соответствует 55% относительной влажности воздуха при температуре 20°C.

Свежесрубленное дерево может иметь относительную влажность древесины 50-70%. Существуют различные способы сушки древесины, в т.ч. горячим воздухом, СВЧ и с помощью вакуумных камер. В ходе технологического процесса важно не только довести влажность древесины до требуемой величины (9±3 %), но и не создать при этом остаточных напряжений, которые могут в дальнейшем привести к короблению паркета или его растрескиванию.

Необходимо понимать, что даже хорошо высушенный паркет будет реагировать на перепады влажности в помещении. Но при этом изменения, происходящие в нем, не будут носить критический характер, если относительная влажность и температура в помещении соответствуют нормальным условиям.

Исходя из общих для разных пород древесины критериев оценки, можно определить характеристики, которые трансформируются в потребительские свойства изделий из древесины , и составить соответствующую таблицу ("Свойства древесины различных пород, используемых в паркетном производстве", см. на CD-ROM ссылка дана ниже). В качестве критериев оценки свойств древесины применяются следующие:

  • твердость и стойкость к нагрузкам, влияющие на износостойкость - срок службы паркетного пола;
  • стабильность и степень усадки, характеризующие реакцию древесины на изменение температуры и влажности и определяющие, в том числе совместимость разных пород в структурах художественного паркета;
  • степень окисления, определяющая стабильность цвета древесины в процессе эксплуатации;
  • выразительность текстуры, характеризующая эстетические свойства поверхности древесины.

Защита древесины подразумевает сравнительно широкий круг мер и средств, призванных воспрепятствовать влиянию на нее воздействий, разрушающих ее или изменяющих ее характеристики в нежелательном направлении. Это, прежде всего защита от влажности, предусматривающая нанесение на поверхность дерева (с пропиткой его на некоторую глубину) лаков, восковых мастик или масел. Защита от влажности в процессе хранения и транспортировки предусматривает использование соответствующей упаковки, защищающей как от влажности, так и от механических воздействий при перевозке.

Для определенных условий эксплуатации предусматривается пропитка древесины пирофобными и антисептическими средствами.

С целью повышения твердости древесины при изготовлении некоторых видов напольных покрытий она подвергается специальному прессованию, повышающему плотность поверхностных слоев. Для таких видов напольных покрытий, как паркетная доска и пронто-паркет, используется многослойная структура в подоснове материала с взаимно-перпендикулярным креплением слоев, что способствует повышению стабильности геометрических размеров элементов напольных покрытий.

И, наконец, задаче защиты натуральной древесины служит поддержание нормальных условий эксплуатации напольных покрытий из нее. Ибо несмотря на все защитные покрытия и меры по гидроизоляции полов, мы ценим натуральные деревянные полы, кроме всего прочего, за их способность "дышать", т.е. обеспечивать влагообмен с окружающим воздухом. Излишняя влажность или наоборот пересушенный воздух вредны для нас также, как и для используемых нами изделий из натурального дерева. При этом следует иметь в виду, что ни применяемая упаковка, ни любые виды защитных покрытий, используемых для полов, не обеспечивают полной влагонепроницаемости.

Основные свойства древесины как конструкционного материала. Достоинства и недостатки.

Физические свойства

Плотность.

Температурное расширение. α

Теплопроводность λ ≈ 0,14Вт/м∙ºС.

.

Теплоемкость С = 1,6КДЖ/кг∙ºС.

Механические свойства древесины

прочностью - способностью сопротивляться разрушению от механических воздействий; жесткостью - способностью сопротивляться изменению размеров и формы; твердостью - способностью сопротив­ляться проникновению другого твердого тела; ударной вязкостью - способностью погло­щать работу при ударе.

Древесина, как и другие строительные материалы, имеет свои достоинства и недос­татки.

Достоинства:

Наличие широкой, постоянно возобновляемой сырьевой базы;

Относительно малая плотность;

Высокая удельная прочность - отношение предела прочности при растяжении вдоль волокон к плотности: 100/500 = 0,2 (примерно равная стали);

Стойкость к солевой агрессии, к воздействию других химически агрессивных сред;

Биологическая совместимость с человеком и животными - в зданиях из древесины наилучший микроклимат;

Высокие эстетические и акустические свойства - лучшие концертные залы страны облицованы древесиной;

Малый коэффициент теплопроводности поперек волокон - стена из бруса шириной 200 мм эквивалентна по теплопроводности кирпичной стене шириной 640 мм;

Малый коэффициент линейного расширения вдоль волокон - в деревянных зданиях нет необходимости устраивать температурные швы и подвижные опоры;

Меньшая трудоемкость механической обработки, возможность создания гнутоклееных конструкций.

Недостатки:

Анизотропия строения древесины;

Подверженность загниванию и поражению жуками-древоточцами;

Сгораемость в условиях пожара;

Изменение физико-механических характеристик под воздействием различных фак­торов (влаги, температуры);

Усушка, разбухание, коробление и растрескивание под влиянием атмосферных воздействий;

Наличие пороков (сучки, косослой и других), существенно снижающих качество изделий и конструкций;

Ограниченность сортамента лесоматериалов.

Виды конструкционных пластмасс Их физико-механические характеристики. Достоинства и недостатки. Область применения.

В зависимости от вида смол под влиянием на них температуры, пластмассы делятся на два вида: а) термопластичные пластмассы (или термопласты) на основе термопластичных смол; б) термореактивные (реапласты) на основе термореактивных смол.

Термопластичные пластмассы обычно называются по связующему веществу, исходя из наименования мономера с добавлением приставки «поли-»(поливинилхлорид, полиэтилен, полистирол и др.)

Термореактивные - по виду наполнителя (стеклопластики, древесные пластики и др.)

В зависимости от структуры пластмассы можно разделить на две основные группы:

1) пластмассы без наполнителя (не наполненные);

2) пластмассы с наполнителем (наполненные).

К пластмассам, которые находят и будут находить в будущем наибольшее применение в строительных конструкциях относятся стеклопластики, оргстекло, винипласт, полиэтилен, тепло- и звукоизоляционные материалы, древесные пластики.

Стеклопластики.

Стеклопластики представляют собой материалы, состоящие из стекловолокнистого наполнителя и связующего.

В качестве связующего обычно используются термореактивные смолы (полиэфирная, эпоксидная, фенолоформальдегидная). Стеклянное волокно является армирующим элементом, прочность которого достигает 1000-2000 МПа. Основой стекловолокон являются элементарные волокна.

Элементарные волокна (первичные нити) получают из расплавленной стеклянной массы, вытягивая ее через небольшие отверстия- фильеры; элементарные волокна (порядка 200) диаметром 6-20 мкм объединяют в нити, а несколько десятков нитей- в жгуты (крученые нити).

В стеклопластиках, применяемых в строительстве, используют следующие стекловолокнистые наполнители:

а) прямолинейные непрерывные волокна, вводимые в виде жгутов, нитей или элементарных волокон.

б) рубленое стекловолокно в виде хаотически расположенных отрезков длиной приблизительно 50 мм.

Механические свойства стеклопластиков зависят от вида стекловолокнистого наполнителя. Наиболее высокими механическими свойствами обладают стеклопластики, армированные непрерывным прямолинейным стекловолокном. В направлении волокон их прочность достигает 1000 МПа при растяжении, а модуль упругости до 40000 МПа, однако, в поперечном направлении прочность стеклопластиков не велика (примерно в 10 раз меньше).

Все стеклопластики, армированные в одном или в двух взаимноперпендикулярных направлениях, являются материалами анизотропными.

Стеклопластики, армированные рубленым стекловолокном, являются изотропными материалами.

Существуют следующие виды стеклопластиков:

1) Пресс - материалы типа СВАМ (стекловолокнистый анизотропный пресс- материал) является одним из первых высокопрочных стеклопластиков, полученных путем прессования стеклошпонов (шпонов из однонаправленного стекловолокна).

Получают его таким образом: после намотки определенного числа слоев пропитанной нити однонаправленный материал срезают. В развертке он представляет собой квадратный лист размером 3х3 м 2 . Затем поворачивают лист на 90 градусов и вновь наматывают слой нитей. Таким образом, получается стеклошпон с взаимно-перпендикулярным расположением волокон. Предел прочности СВАМ при растяжении и сжатии составляет 400-500 МПа, а при изгибе, приблизительно, 700 МПа.

2) Пресс - материалы АГ-4С и АГ-4В.

АГ-4С представляет собой однонаправленную ленту, полученную на основе крученых стеклянных нитей и аминофинолоформальдегидной смолы. АГ-4С предназначается для получения высокопрочных изделий методом прямого прессования или намотки.

Пределы прочности при сжатии и изгибе ниже, чем у СВАМ – 200-250 МПа, а при растяжении несколько выше.

Пресс – материал типа АГ-4В представляет собой стекловолокнит на основе срезов первичной нити. Специально подготовленный стекловолокнистый наполнитель смешивают с фенолоформальдегидной смолой, затем сушат.

Стеклопластики типа СВАМ, АГ-4С и АГ-4В используют для изготовления соединительных деталей (болтов, фасонок) и для профильных изделий, эксплуатируемых в химически агрессивных средах, где металл быстро корродирует. Все перечисленные стеклопластики являются светонепроницаемыми. Однако, в строительстве чаще всего применяют светопрозрачные стеклопластики. У нас в стране в больших объемах выпускается светопроницаемый полиэфирный листовой стеклопластик.

3) Полиэфирный стеклопластик изготавливают на основе рубленого стекловолокна и прозрачных полиэфирных смол, благодаря которым полиэфирный стеклопластик является светопроницаемым. Выпускается он в изделиях в виде волнистых или плоских листов, часто имеющих различные окраски. Прочностные характеристики существенно ниже, чем у предыдущих материалов, и составляют 60-90 МПа при растяжении и сжатии.

Полиэфирные стеклопластики получили широкое применение в ограждающих конструкциях (стеновые и кровельные панели), лестничных ограждениях и балконных ограждениях, навесах т.п. конструкциях. Весьма перспективны стеклопластики для совмещенных пространственных конструкций.

Древесные пластики.

Материалы, полученные на основе переработки натуральной древесины, соединенные синтетическими смолами называют древесными пластиками.

Древеснослоистые пластики (ДСП) изготавливают из тонких листов березового (иногда ольхового, липового или букового) шпона, пропитанного смолой и запрессованного при высоком давлении 150-180 кг\см 2 и температуре t=145-155ºC.

В зависимости от взаимного расположения слоев шпона в пакете, различают 4 основных марки ДСП:

ДСП-А – все слои параллельны друг другу, ДСП-Б – через каждые 10-12 параллельных слоев один поперечный, ДСП-В – перекрестное расположение, причем наружные слои располагаются вдоль плиты, ДСП-Г – звездообразная, каждый слой смещен по отношению к предыдущему на 25-30º.

Во всех случаях прочность ДСП превышает прочность цельной древесины, а для некоторых марок при действии усилий вдоль волокон шпона не уступает прочности стали.

В настоящее время в связи еще с высокой стоимостью ДСП, он применяется в основном для изготовления средств соединения элементов конструкций.

Древесноволокнистые плиты (ДВП) изготавливают из хаотически расположенных волокон древесины (опилок), склеенных канифольной эмульсией. Сырьем для ДВП являются отходы лесопиления и деревообработки. Для изготовления твердых и сверхтвердых плит в древесноволокнистую массу добавляют фенолоформальдегидную смолу. При длительном действии влажной среды, древесноволокнистая плита весьма гигроскопична, набухает по толщине и теряет прочность, поэтому во влажных условиях применять ДВП не рекомендуется. Прочность сверхтвердых плит ДВП плотностью не менее 950 кг\м 3 при растяжении составляет около 25 МПа.

Древесностружечные плиты (ПС и ПТ) получают путем горячего прессования древесных стружек, перемешанных, вернее опыленных фенолоформальдегидными смолами.

Древесностружечные плиты в зависимости от плотности подразделяют на:

Легкие γ=350-500 кг\м 3

Средние ПС γ=500-650 кг\м 3

Тяжелые ПТ γ=650-800 кг\м 3

Прочность плит ПТ и ПС при растяжении составляет соответственно 3,6-2,9 МПа и 2,9-2,1 МПа. ПС и ПТ являются дешевым и доступным материалом, он широко используется в строительстве в качестве перегородок, подвесных потолков. Влагопоглощение плит колеблется в широких пределах, при этом они разбухают по толщине на 30-40%.

Воздухонепроницаемые ткани - новый, необычный конструкционный материал, состоящий из текстиля и эластичных покрытий.

Технический текстиль является прочностной основой воздухонепроницаемых тканей. Он изготовляется из высокопрочных синтетических волокон. Полиамидные волокна типа «капрон» применяются наиболее широко. Они имеют высокую прочность, значительную растяжимость и малую стойкость против старения. Полиэфирные волокна типа «лавсан» менее растяжимы и более стойки против старения.

достоинств этого материала:

недостатки

Применение пластмасс в качестве материала для строительных конструкций объясняется рядом достоинств этого материала:

Высокой прочностью, составляющей для большинства пластмасс (кроме пенопластов) 50-100 НПа, а для некоторых стеклопластиков прочность достигает 1000 НПа;

Малой прочностью (объемной массой) находящихся в пределах от 20 (для пенопластов) до 2000 кг\м 3 (для стеклопластиков);

Стойкостью к воздействию химически агрессивных сред;

Биостойкостью (неподверженность гниению);

Простотой формообразования и легкой обрабатываемостью;

Высокими электроизоляционными свойствами и некоторыми другими положительными свойствами.

Вместе с тем пластмассы имеют и недостатки , такие, например, как деформативность, ползучесть и падение прочности при длительных нагрузках, старение (ухудшение эксплуатационных свойств во времени), сгораемость, использование в качестве сырья дефицитных нефтепродуктов.

Влияние недостатков пластмасс можно уменьшить разными путями. Так, уменьшение деформативности добиваются применением рациональных форм поперечного сечения конструкций (трехслойные, трубчатые).

Сгораемость и старение можно уменьшить путем введения специальных добавок.

Физические свойства

Плотность. Древесина относится к классу легких конструкционных материалов. Ее плотность зависит от относительного объема пор и содержания в них влаги. Стандартная плотность древесины должна определяться при влажности 12%. Свежерубленая древесина имеет плотность 850 кг/м 3 . Расчетная плотность древесины хвойных пород в составе конструкций в помещениях со стандартной влажностью воздуха 12% принимают равной 500 кг/м 3 ., в помещении с влажностью воздуха более 75% и на открытом воздухе – 600 кг/м 3 .

Температурное расширение. Линейное расширение при нагревании, характеризуемое коэффициентом линейного расширения, в древесине различно вдоль и под углами к волокнам. Коэффициент линейного расширения α вдоль волокон составляет (3 ÷ 5) ∙ 10 -6 , что позволяет строить деревянные здания без температурных швов. Поперек волокон древесины этот коэффициент меньше в 7 – 10 раз.

Теплопроводность древесины благодаря ее трубчатому строению очень мала, особенно поперек волокон. Коэффициент теплопроводности сухой древесины поперек волокон λ ≈ 0,14Вт/м∙ºС. Брус толщиной 15 см эквивалентен по теплопроводности кирпичной стене толщиной в 2,5 кирпича (51 см)воле, а так жетакже при распиловке бревен в результате их сбега.

ластями, опильных станках. .- торцами.ниванию, чем хвой .

Теплоемкость древесины значительна, коэффициент теплоемкости сухой древесины составляет С = 1,6КДЖ/кг∙ºС.

Еще одним ценным свойством древесины является ее стойкость ко многим химическим и биологическим агрессивным среда. Она является химически более стойким материалом, чем металл и железобетон. При обычной температуре плавиковая, фосфорная и соляная (низкой концентрации) кислоты не разрушают древесину. Большинство органических кислот при обычной температуре не ослабляют древесину, поэтому она часто используется для конструкций в условиях химически агрессивных сред.

Механические свойства древесины характеризуются: прочностью - способностью сопротивляться разрушению от механических воздействий; жесткостью - способностью сопротивляться изменению размеров и формы; твердостью - способностью сопротив­ляться проникновению другого твердого тела; ударной вязкостью - способностью погло­щать работу при ударе.

Для изготовления деревянных несущих конструкций обычно применяют лесные материалы хвойных пород: сосну, ель, лиственницу, кедр и пихту. Среди лесных насаждений России хвойные леса наиболее распространены. Древесина хвойных пород превосходит по прочности древесину большинства распространенных лиственных пород и меньше подвержена загниванию. Стволы хвойных деревьев имеют более правильную форму, что позволяет полнее использовать их объем. Наиболее часто используется сосна.

Сосна, по месту произрастания делится на сосну мяндовую и сосну рудовую. Мяндовая предпочитает низменные почвы, древесина ее неплотная, рыхлая, менее слоистая чем у рудовой сосны и поэтому склонна к загниванию во влажной среде. Она очень хорошо обрабатывается, прекрасно пропитывается и мало подвержена короблению. Рудовая сосна, в отличие от мяндовой, произрастает на холмах, различных возвышенностях и предпочитает каменистую суглинистую или супесчаную почву. Древесина ее смолиста и мелкослойна, обладает достаточно высокой плотностью. Именно эти качества обеспечили рудовой сосне достойное место в сфере домостроительных технологий (полы, конструкции крыш, стены, внутренние перегородки).

Ельпо ряду характеристик уступает сосне. Она хуже обрабатывается, менее плотная и менее прочная, чем сосна. Существенно ухудшает потребительские свойства ели ее сучковатость и повышенная твердость. Склонность древесины ели к загниванию ограничивает ее использование в местах, подверженных влиянию влаги. В домостроении ель используется в изготовлении дверных блоков, полов, внутренних перегородок, мебели.

Лиственница отличается высокой плотностью, устойчивостью против гниения, твердостью. Последнее существенно затрудняет обработку лиственницы, что в какой-то мере ограничивает ее применение в строительстве. Но остальные качества, плюс обладание высокой стойкостью от коробления обеспечивают лиственнице репутацию ценного строительного материала.

Лиственница, как никакой другой материал, требует очень умеренного режима сушки с соблюдением всех мер предосторожности. Дело в том, что при интенсивной сушке в лиственнице появляются трещины. В домостроении лиственница применяется прежде всего там, где требуется высокая устойчивость против гниения. Кроме этого лиственница зарекомендовала себя как хороший материал для изготовления паркетных планок.

Кедр сибирскийпо своим физико-механическим свойствам занимает промежуточное место между елью и пихтой. Древесина у кедра мягкая, легкая, хорошо подвергается обработке. При специальной обработке приобретает повышенную стойкость против гниения. В домостроении задействуется в основном там же, где и сосна. Но это хороший материал и для узлов и конструкций, испытывающих перепады влажностного и температурного режимов.

Пихта сибирскаяпо своим качествам сходна с древесиной ели, но уступает ей по прочности и плотности. И в чем не уступает ели только пихта кавказская. Применение пихты довольно распространенное (особенно пихты кавказской). Это и дверные и оконные блоки, полы, плинтуса, раскладки, фризы и много других изделий. Во внешних деревянных конструкциях пихта не задействуется ввиду низкой стойкости против загнивания.

Применение древесины твердых лиственных пород (дуба, бука, ясеня, граба, клена) допускается лишь в тех районах, где эти породы являются местным строительным материалом.

Дуб черешчатый (летний)обладает большой прочностью и стойкостью против загнивания и употребляется главным образом на мелкие ответственные части деревянных конструкций в виде нагелей, шпонок, вкладышей и т.п. Единственное, что не следует забывать – древесина дуба подвержена раскалыванию при забивании в нее гвоздей или завинчивании шурупов без предварительной проходки канала отверстия сверлом меньшего диаметра.

Букпо основным качествам (прочность и твердость) мало в чем уступает дубу, но его древесина имеет высокую гигроскопичность и поэтому больше подвержена гниению. В то же время древесина бука высокотехнологична: хорошо обрабатывается любым инструментом, хорошо гнется под паром. В домостроении применяется не так широко, как дуб (из-за гигроскопичности), но зато очень востребована в отделочных работах.

Для изготовления открытых наслонных стропил и обрешетки в покрытиях постоянных зданий с чердаком, а также для строительства временных зданий (складов, навесов, сараев и др.) и сооружений вспомогательного назначения (эстакад, вышек и др.) следует широко применять древесину мягких лиственных пород – осину, березу, бук, липу, тополь и ольху, но с обязательной усиленной защитой от гниения.

Круглые лесоматериалы.Применяемые в промышленном и гражданском строительстве лесоматериалы делятся на круглые и пиленые. Для каждого из этих видов материалов соответствующими стандартами установлены их классификация, сортность, сортамент, вид обработки, требования к качеству, допускаемые отклонения от нормальных размеров и условия приемки.

Бревно строительное может использоваться в круглом виде или в качестве сырья для получения пиломатериалов. Пиловочные бревна имеют следующие стандартные размеры.

Таблица 1.1.

Длина бревен от 3 до 6,5 м с градацией через 0,5 м. Увеличение толщины бревна по длине называется сбегом. В среднем сбег составляет 0,8 см на 1 м длины. Более массивная часть бревна называетсякомлем, а противоположная –верхнимотрубом. Диаметр бревна замеряется в верхнем отрубе. Бревна длиной более 6,5 м заготовляют по специальному заказу для опор линий электропередач и связи.

Пиленые лесоматериалы.К пиленым лесным материалам относятся:

двукантные брусья, у которых опилены лишь две стороны (рис. 1.2.а);

четырехкантные брусья, у которых опилены все четыре стороны (рис.1.2.б и в);

Бруски, опиленные с четырех сторон, толщиной не более 10 см и шириной не более двойной ширины (рис.1.2.г);

доски толщиной не более 10 см и шириной более двойной толщины: доски делятся на тонкие, толщиной до 3,2 см (рис.1.2.д) и толстые – более 3,2 см (рис.1.2.е).

Рис. 1.2. Пиленые лесоматериалы: а – двукантный брус,

б – обзольный четырехкантный брус, в - чистообрезной

четырехкантный брус, г – брусок, д – тонкая доска,

Сортамент древесины

Лесоматериалы, получаемые строительством, делят на круглые и пилёные .

Круглые лесоматериалы , называемые также бревнами, представляют собой части древесных стволов с гладко опиленными концами – торцами. Они имеют стандартную длину 3 – 6,5 м. с градацией через каждые 0,5 м. Бревна имеют естественную усечено-коническую форму. Уменьшение их толщины по длине называется сбегом. В среднем сбег составляет 0,8 см на 1 м длины (для лиственницы 1 см на 1 м длины) бревна. Средние бревна имеют толщину от 14 до 24 см крупные – до 26 см. Бревна толщиной 13 см (подтоварник) и менее используют для временных построечных сооружений. Круглые лесоматериалы в зависимости от качества подразделяются на 1,2 и 3 сорта.

Пиломатериалы получают в результате продольной распиловки бревен на лесопильных рамах или круглопильных станках. Пиломатериалы подразделяются по характеру обработки: на обрезные (опиленные с 4 сторон по всей длине); обзольные (часть поверхно­сти не опилена по всей длине из-за сбега бревна); необрезные (не опилены две кромки).

Пиломатериалы прямоугольного сечения делятся на доски, бруски и брусья. Более широкие стороны пиломатериалов называют пластями, а узкие – кромками. Пиломатериалы имеют стандартную длину 1– 6,5м с градацией через каждые 0,25м. Ширина пиломатериалов колеблется от 75 до 275 мм, толщина – от 16 до 250 мм. По качеству древесины и обработки доски и бруски разделяют на пять сортов (отборный, 1, 2, 3, 4-й), а брусья на четыре (1, 2, 3, 4-й).

Плотность древесины.

Плотность древесины – это отношение массы древесины к её объёму. Плотность определяется количеством древесного вещества в единице объёма. Выражается плотность в кг/м3 (килограмм на метр кубический) либо г/см3.

В древесине имеются пустоты (полости клеток, межклеточные пространства). Если бы удалось спрессовать древесину, чтобы все пустоты исчезли, то получилось бы сплошное древесное вещество. Плотность древесины вследствие пористого строения меньше, чем плотность древесного вещества, то же правило можно применить к древесным продуктам, например плотность берёзы или ели ниже плотности берёзовой или хвойной фанеры.

Между плотностью и прочностью древесины существует тесная связь. Более тяжёлая древесина, как правило, является более прочной.

Величины древесной плотности колеблются в очень широких пределах. Наибольшую плотность имеет древесина самшита – 960 кг/м3, берёзы железной – 970 кг/м3 и саксаула – 1040 кг/м3; наименьшую плотность имеет древесина пихты сибирской – 375 кг/м3 и ивы белой – 415 кг/м3. С увеличением влажности плотность древесины увеличивается. Например, плотность древесины бука при влажности 12% составляет 670 кг/м3, а при влажности 25% - 710 кг/м3. В пределах годичного слоя плотность древесины различная: плотность поздней древесины в 2-3 раза больше, чем ранней, поэтому чем лучше развита поздняя древесина, тем выше её плотность.

По плотности при влажности 12% древесину можно разделить на три группы:

Породы высокой плотности – 750 кг/м3 и выше – акация белая, берёза железная, граб, самшит, саксаул, фисташка, кизил.

Породы средней плотности – 550 - 740 кг/м3 – лиственница, тис, берёза, бук, вяз, груша, дуб. Ильм, карагач, клён, платан, рябина, яблоня, ясень.

Породы малой плотности – 510 кг/м3 и менее – сосна, ель, пихта, кедр, тополь, ольха, липа, ива, каштан, орех маньчжурский, бархатное дерево.

Древесина хвойных пород обладает малой плотностью, а рассеянно-сосудистых лиственных пород – высокой плотностью, поэтому она чисто обрабатывается, хорошо лакируется и полируется.

Рис. 12.11. Сегментная металлодеревянная ферма с клееным верхним поясом линейного очертания

1 – стальной башмак опорного узла; 2 – то же, нижнего пояса; 3 – металлический вкладыш

Рис. 12.13. Определение расчетного изгибающего момента в верхних поясах сегментных металлодеревянных ферм.

Эпюры изгибающих моментов в ферме с разрезным (а) и неразрезным (б) верхним поясом и схемы работы криволинейного элемента - постоянная нагрузка по всему пролету и временная (снеговая) на половине пролета.

Снеговая нагрузка принимается по схеме 2 прил. 3 СНиП (1) для сводчатых покрытий, при этом наиболее невыгодное сочетание нагрузок получается обычно при учете односторонней снеговой нагрузки, распределенной по закону треугольника.

Геометрические размеры элементов ферм определяют, заменяя криволинейный верхний пояс прямолинейным, т.е. соединяя узлы верхнего пояса прямыми линиями – хордами.

Конструктивный расчет ферм заключается в подборе сечения поясов, раскосов, конструировании и расчете узлов. Верхний пояс ввиду криволинейности и приложения нагрузки между узлами рассчитывается как сжато-изгибаемый элемент.

Расчетный изгибающий момент в панелях верхнего пояса определяется как сумма моментов от поперечной нагрузки и момента от продольной силы, возникающего за счет выгиба панели (рис. 12.13).

При разрезном верхнем поясе момент определяется по формуле

(12.3)

где М 0 – изгибающий момент, определенный по балочной схеме,

D 1 – горизонтальная проекция панели между центрами узлов;

q– расчетная условно равномерно распределенная нагрузка (в пределах панели);

N– расчетная сжимающая сила в панели верхнего пояса;

f 0 – стрела подъема (кривизны) панели;

d- длина панели по хорде;

R– радиус кривизны верхнего пояса,

l– пролет фермы;

f– высота фермы в середине пролета между осями поясов.

При неразрезном верхнем поясе расчетные изгибающие моменты в пролете и на опорах определяются как для неразрезной многопролетной балки с равными пролетами по приближенным формулам:

для опорных (крайних) панелей

(12.4)

(12.5)

для средних панелей

(12.6)

(12.7)

Моменты от продольных сил определены, исходя из предположения, что каждая панель представляет собой однопролетную балку, причем крайние панели считаются шарнирно опертыми с одного конца и с жестко закрепленным другим концом, а средние панели – с обоими жестко закрепленными концами. При определении гибкости расчетную длину крайних панелей принимают равной 0,8 длины хорды, а средних панелей – 0,65d.

Сечение нижнего пояса подбирается по формуле для центрально-растянутых стальных элементов по площади нетто, то есть с учетом ослаблений от отверстий для узловых болтов. При расположении узлового болта с эксцентриситетом относительно оси нижнего пояса, нижний пояс проверяется на внецентренное растяжение с учетом нагрузки от собственного веса.

Сжатые раскосы рассчитываются на продольный изгиб с расчетной длиной, равной длине раскоса между центрами узлов фермы. Растянутые раскосы рассчитываются на растяжение с учетом имеющихся ослаблений. В целях унификации все раскосы принимаются одинакового сечения.

Затем определяется количество глухарей (нагелей), необходимых для крепления пластинок к раскосам, рассматривая наиболее нагруженный элемент. Проверяют стальные пластинки на растяжение по ослабленному сечению и на устойчивость из плоскости, принимая расчетную длину планки равной расстоянию от узлового болта до ближайшей к нему болта раскоса. Для уменьшения расчетной длины планок ставится дополнительный стяжной болт вне раскоса.

Конструируется и рассчитывается опорный узел фермы:

Выполняется проверка торца верхнего пояса на смятие;

Назначаются размеры опорной плиты из условия опирания и закрепления анкерными болтами;

Определяется необходимая длина сварных швов для крепления уголков нижнего пояса к фасонкам опорного узла.

При необходимости рассчитывается стальной вкладыш в узлах разрезного верхнего пояса и узловой болт. Узловой болт, на который надеваются пластинки раскосов, рассчитывается на изгиб от равнодействующей усилий R б, возникающих в примыкающих раскосах при односторонней нагрузке. Момент в узловом болте

где а – плечо приложения силы R б,

а=δ+0,5δ 1 (δ – толщина пластинки – наконечника, δ 1 – толщина крайнего ребра узлового вкладыша).

Строительный подъем ферм назначается равным 1/200 пролета. Выполняется проверка фермы на действие монтажных нагрузок.

См.п18

Рисунок 8 – Геометрическая и расчетная схема арки

В стрельчатых арках определяют угол наклона α и длину l хорды, центральный угол φ и длину S/2 полуарки, координаты центра a и b, угол наклона опорного радиуса φ 0 и уравнение дуги левой полуарки . Затем половину пролета арки делят на четное число, но не менее шести равных частей и в этих сечениях определяют координаты х и у, углы наклона касательных α и их тригонометрические функции.

Статический расчет

Опорные реакции трехшарнирной арки состоят из вертикальных и горизонтальных составляющих. Вертикальные реакции R a и R b определяют как в однопролетной свободно опертой балке из условия равенства нулю моментов в опорных шарнирах. Горизонтальные реакции (распор) H a и H b определяют из условия равенства нулю моментов в коньковом шарнире.

Определение реакций и усилий удобно производить в сечениях только одной левой полуарки в следующем порядке:
- сначала усилия от единичной нагрузки справа и слева, затем от левостороннего, правостороннего снега, ветра слева, ветра справа и массы оборудования.

Изгибающие моменты следует определять во всех сечениях и иллюстрировать эпюрами.

Продольные и поперечные силы можно определять только в сечениях у шарниров, где они достигают максимальных величин и необходимы для расчетов узлов. Необходимо также определять продольную силу в месте действия максимального изгибающего момента при таком же сочетании нагрузок.

Усилия от двустороннего снега и собственной массы определяют путем суммирования усилий от односторонних нагрузок.